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Introduction

Abstract
We present a unified approach to curved surface fitting in the framework of total least squares. Compared to algebraic and geometric fitting 
of surface models to 3D point cloud, this approach is relatively new. It has the largest degree of generality, such that any conceivable surface 
fitting problem can be formulated within this framework. In our contribution we consider quadric surfaces, which represent a very large 
and most popular class of curved surfaces. We discuss aspects of parametrizations and the use of constraints to restrict the set of solutions 
to special types of quadrics, like planes, spheres, ellipsoids, hyperboloids, cubes, cuboids, toroids, cylinders, cones, pyramids etc. Then we 
propose an iterative solution using Lagrange multipliers and the Newton method. The choice of an initial guess is discussed. Finally, we 
present a numerical example: fitting an elliptic cylinder with oblique axis to 20 data points. The results show that the total least squares 
fitting using type-constraints can be generally recommended to fit curved surfaces to point clouds.

Keywords: Quadric Surfaces; Point Cloud Fitting; Newton Method; Total Least Squares; Lagrange Multipliers

Many measuring technologies only yield point observations, but actually a surface model is desired. Examples are the terrestrial 
and the airborne laser scanner technology, which are more and more applied in many branches, most of all in geodesy and 
photogrammetry. Today, a large number of such points is measurable in almost no time, forming huge point clouds in 3D space. 
See Yang et al. (2017) for the general relevance of point clouds in laser scanning technology [1].

This requires fitting surface models to such clouds. In computer graphics and CAD simple surface models are also known as 
geometric primitives: planes, spheres, ellipsoids, hyperboloids, cubes, cuboids, toroids, cylinders, cones, pyramids etc. Numerically, 
this fitting is an optimization: The optimally fitting surface is desired. This task is challenging for three reasons: The optimization 
problem

1. is usually nonlinear, requiring good initial guesses for the parameters to be optimized and a fastly converging iterative  
    procedure,
2. often involves a large number of data points, possibly affected by outliers, and
3. is sometimes unstable or ill-posed because only small parts of the surface are covered by point observations.

In this contribution we deal with quite a general class of surfaces, known as quadric surfaces. Planes, spheres, spheroids, ellipsoids, 
hyperboloids, paraboloids, cylinders and cones belong to this class. They can be used as a model surface for fitting planar as well 
as most curved surfaces [2,3].

Optimal fitting requires a definition of optimality. This definition essentially determines the mathematical tools to be used as 
well as the computational costs. Two different definitions are customary: algebraic and geometric. The algebraic fitting is the 
most common technique applied in CAD, reverse engineering and computer vision technology [4]. It extends the equation of the 
quadric by a residual term. Optimality is now defined as the sum of squared residuals at the data points being a minimum.

Geometric fitting uses the spatial geometric distances of the data points from the quadric surface as a criterion of optimality [5-7]. 
It is more intuitive, but often computational much more costly than algebraic fitting. The author believes that when fitting surface 
models, computational costs should not be a criterion for exclusion of a method today.
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Golub and Van Loan (1980) introduced total least squares (TLS) estimation. For the relationship of TLS to the errors-in-variables 
(EIV) model and the Gauss-Helmert model used in geodesy see (Neitzel 2010) Recently, Malissiovas et al. (2016) investigate 3D 
plane fitting by TLS [8-10].

When fitting surfaces to data points, the TLS approach is very much related to geometric fitting, but seen from a viewpoint, which 
is statistical rather than geometrical. The residual vector is orthogonal to the surfaces, which motivates using the term “orthogonal 
regression”. The TLS approach to quadric surface fitting goes back to Späth (2004), but in principle the author also uses the geometric 
viewpoint. Up to now, the statistical viewpoint has not yet been consistently presented and fully exploited. Moreover, the idea of 
using type-constraints has not yet been consistently implemented into TLS. These are the mainstays of our contribution [4].

The outline of the paper is as follows: After deriving the geometry and parametrizations of a general quadric surface and all common 
special cases of it, we review the algebraic, geometric and TLS approaches found in the literature. The latter is then elaborated 
towards a unified approach applicable to all quadric surfaces by using type-constraints. These constraints restrict the set of admissible 
surfaces and are implemented in the framework of Lagrange multipliers. Finally, we apply this unified approach to the problem of 
fitting an elliptical cylinder with oblique axis to a number of 3D data points. The performance of TLS fitting is compared to the 
classical algebraic fitting.

We start with a parametric model of a curved surface in three-dimensional space. For this purpose, the model of a quadric surface 
is well suited for most practical purposes. A quadric exists also in other dimensions (quadric curve, quadric hyper surface etc.). But 
since we deal here only with quadric surfaces, we call them ‘quadrics’ for short.

However, the remaining 10 parameters, collected in a vector

still exhibit a nonuniqueness, which causes trouble, when trying to fit a quadric to data points: All parameters multiplied by an 
arbitrary nonzero scalar describe the same quadric. At first dash it seems possible to solve this problem by introducing an arbitrary 
linear constraint

A simple constraint would be , i.e. in (5a) we get c=(0,....0,1). But this would be bad because a quadric passing through q=0 can no 
longer be represented. Moreover, moving the quadric by a small amount can cause jumps in some of the remaining 9 parameters. 
This also would cause numerical trouble, when trying to fit a quadric to data points.

With some arbitrarily chosen vector c . But this solution fails if the vector space of equivalent parameters β happens to be perpenticular 
to c.

Therefore, we propose a different approach to the parametrization of a quadric: We introduce a nonlinear constraint on the 
parameters in (4). The simplest one is

A constraint of type (5a) or (5b) will be called “uniqueness constraint” in the following. (5b) almost completely fixes the nonuniqueness 
described above, but leaves three minor problems unsolved:

Let  x,y,z be Cartesian coordinates of the 3D space. A point with coordinate vector ( ), , Tq x y z=  is situated on a quadric, if and only 
if it satisfies the equation 

(1)T Tq Uq v q w+ =

The elements of the 3x3-matrix U , the 3-vector  and the scalar w are the parameters of the quadric. It would not be useful to consider 
nonsymmetric matrices U, because

(2)( )1
2

T T Tq U U q v q w+ + =

would describe the same quadric as (1), with the now symmetric matrix ( ) / 2TU U+   in place of U. Let us therefore restrict to the 
case that U is symmetric:

(3), 
xx xy xz x

xy yy yz y

xz yz zz z

u u u v
U u u u v v

u u u v

   
   = =   

     

(5b)2 2 2 2 2 2 2 2 2 1xx xy xz yy yz zz x y zu u u u u u v v v+ + + + + + + + =

(4)( ), , , , , , , ,xx xy xz yy yz zz x y zu u u u u u v v vβ =

(5a)1Tc β =
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  1. The degenerate quadric β=0 , i.e. , U = 0, V = 0, w = 0, must be excluded from consideration.
  2. If β satisfies (1) and (5b), so does -β. But as long as we keep away from the degenerate case β=0, we do not expect numerical 
      problems.
  3. (5b) is not invariant under translation and rotation of the coordinate system.

Let U be an invertible matrix. In this case, by a transformation

we can rewrite (1) in the equivalent form

A reverse transformation from (7) to (1) is

If we want to define parameters based on the form (7) we can replace  , , ,x y zv v v w  in (4) by , , ,x y zq q q w     :

However, we also face an equivalent problem regarding uniqueness of the parametrization as in the form (1): All parameters    
, , ,xx zzu u w…  multiplied by an arbitrary nonzero scalar would describe the same quadric.

Closely examined, for the existance of an expression (8) it is not necessary that U is regular. It is sufficient that v is in the range space 
of U, such that (8) has a solution ,q w  . Nonetheless, there are quadrics, which can be expressed in the form (1), but not in the form 
(7). Conversely, a quadric of the form (7) can always be expressed in the form (1). Thus, (1) is the more general form.

Again, a uniqueness constraint must be added to (7). The simplest one is here

But again leaves three minor problems unsolved:

Summarizing, (1) together with (5a) or (5b) is the optimal parametrization. While (1),(5a) is a linear system of equations for the 
parameters β, (7) is always nonlinear for the parameters β . However, the expression (7) is often useful for studying the geometric 
shape of a quadric, which will be done in the next section.

            1. The degenerate quadric 0, 0U w= = , must be excluded from consideration.
            2. If , ,U q w   satisfies (7) and (10), so does – , ,U q w− 

. But as long as we keep away from the degenerate case 0, 0U w= = , we 
do not expect numerical problems.
            3. (10) is invariant under translation, but not under rotation of the coordinate system.

A number of important special cases are included in the model of a general quadric (1) or (7). They can be formulated by constraints 
applied to the parameter vector β. Such constraints will be called “type constraints” in the following.

Plane: Restricting the general model (1) of a quadric to the case of a plane can be done by imposing the six linear type constraints

such that (1) simplifies to

We know that v≠0 is the normal vector of a plane with distance  /w v  from the origin.

1 11 1,  
2 4

Tq U v w w v U v− −= − = +  (6)

( ) ( )Tq q U q q w− − =   (7)

2 ,  Tv Uq w w q Uq= − = −    (8)

( ), , , , , , , , ,
T

xx xy xz yy yz zz x y zu u u u u u q q q wβ =     (9)

2 2 2 2 2 2 1xx xy xz yy yz zzu u u u u u+ + + + + = (10)

0, 0, 0, 0, 0, 0xx xy xz yy yz zzu u u u u u= = = = = = (11)

Tv q w= (12)
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where Q is an orthogonal matrix of eigenvectors and Λ is a diagonal matrix of eigenvalues , ,x y zλ λ λ . Since U is symmetric, all three 
eigenvalues are real. Noticing that TQQ I= , we can now rewrite (1) as

The nonuniqueness of the parametrization of the plane is expressed in the fact that the length of  is not determined. (5b) selects the 
unit vector 1v = . The minor problem that v,w and –v,-w describe the same plane, remains unsolved, but is practically marginal.

Since the range space of U=0 only contains the null-vector, a plane cannot be expressed in the form (7). 

Sphere: Restricting the general model (1) of a quadric to the case of a sphere can be done by imposing the five linear type constraints

If for some r>0 we set U=I, i.e. the 3x3-unit matrix, and 2w r= , then (7) reads

describing a sphere around center point  q  with radius r. For the form (1) we find by (8) the relationships

With hindsight, U,v,w must be scaled to fulfill (5b) or (10) or some similar uniqueness constraint. 

and with the principal axes transformation

we get

Similarly, applying the principal axes transformation to (7) with  ' : Tq Q q=   we get

If ( )det 1Q =  then Q and QT are rotation matrices, and the principal axes transformation is simply a rotation of the initial coordinate 
basis towards a basis defined by the eigenvectors of U. If on the contrary ( )det 1Q = −  then an additional reflexion is necessary, 
because initial coordinate axes form a left handed cartesian basis, while the eigenvectors define a right handed cartesian basis or 
vice versa.

Paraboloid: Like a plane, a paraboloid cannot be formulated by (7), but only by (1). It is obtained when one eigenvalue of U is zero, 
but not the corresponding element of 'v .

Restricting the general model (1) of a quadric to any special case can again be done by adding type constraints.

Cone: For (20) to have a solution in the case 0w = , there must be at least one negative and one positive eigenvalue. In this case, 
(20) describes an elliptic or spherical cone. The relevant cases are listed in Table 1, column 3.

Ellipsoid or elliptic hyperboloid or cylinder: If 0w > , then (7) describes an ellipsoid or elliptic hyperboloid or cylinder. Several 
cases need to be distinguished, depending on the signums of the eigenvalues , ,x y zλ λ λ . They are listed in Table 1, column 2. For 
example, in the case of  0, 0, 0x y zλ λ λ> > >  we get an ellipsoid with center point q  and semiaxes of length / , / , /x y zw w wλ λ λ  

 
along the eigenvectors stored in Q.

Principal axes transformation: If the quadric is neither a plane nor a sphere, and we want to get deeper insight into its geometric 
shape, it is necessary to perform a principal axes transformation [11]. For this purpose we have to make an eigenvalue decomposition 
of U, yielding

0, 0, 0, ,xy xz yz xx yy xx zzu u u u u u u= = = = = (13)

² ²q q r− = (14)

22 ,  ²v q w r q= − = −  (15)

TU Q Q= Λ (16)

T T T Tq Q Q q v QQ q wΛ + = (17)

' : ,  ' :T Tq Q q v Q v= = (18)

' ' ' ' ' ' ' ' '' ' ' ' ² ² ²T T
x x y y z z x x y y z zq q v q q q q v q v q v q wλ λ λΛ + = + + + + + = (19)

( ) ( ) ( ) ( ) ( )' ' ' ' ' '' ' ' ' ² ² ²T
x x x y y y z z zq q q q q q q q q q wλ λ λ− Λ − = − + − + − =      (20)
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Algebraic and geometric fitting

Table 1: Geometrical shapes of the quadrics described by (7)

eigenvalues   of  , ,x y zλ λ λ  of U when 0w >  when 0w =  

all positive and equal sphere not possible

all positive, two equal spheroid not possible

all positive, distinct triaxial ellipsoid not possible

one zero, two positive and equal circular cylinder/ circular paraboloid not possible

one zero, two positive and distinct elliptic cylinder/ elliptic paraboloid not possible

one negative, two positive and equal circular hyperboloid of one sheet circular cone

one negative, two positive and distinct elliptic hyperboloid of one sheet elliptic cone

two zero, one positive two parallel planes not possible

one negative, one zero, one positive hyperbolic cylinder/ hyperbolic 
paraboloid two intersecting planes

two negative, one positive and equal circular hyperboloid of two sheets circular cone

two negative, one positive and distinct elliptic hyperboloid of two sheets elliptic cone

all zero not possible degenerate

all negative not possible not possible

Example 1: If the quadric is an elliptic or hyperbolic cylinder, U must be a singular matrix. This imposes the nonlinear type 
constraint: 

Example 2: If the quadric should have prescribed pairwise orthogonal directions of principal axes, matrix Q is fixed. This means 
that QT UQ is a diagonal matrix, which in turn means that the off-diagonal elements of QT UQ must be zero. This can be enforced 
by three linear type constraints imposed on the parameters , , , , ,xx xy xz yy yz zzu u u u u u   : 

Example 3: If the quadric should be an ellipsoid of prescribed lengths of the semiaxes , we find for the eigenvalues , ,x y zλ λ λ   of  U 
the type constraints 

This means that the characteristic polynomial of /U w  is known, which in turn imposes three nonlinear type constraints on 
, , , , , ,xx xy xz yy yz zzu u u u u u w . We here write down only one of them: 

The problem is to determine the parameters of a quadric, best fitting p observed points. Each observed point induces an equation 
(1) or (7), e.g. 

and forms together with the uniqueness constraint and the m type constraints, if any, a nonlinear system of equations. The 
solvability of this set of equations for the 10 parameters is in general not trivial. Nevertheless, if 1 10p m+ + = , i.e. if the number of 
equations equals the number of parameters in vector β or β , we can hope for a unique solution, apart from special configurations 
and besides the sign indeterminacy mentioned in section 2. 

Example 1 (cont’d): If an elliptic cylinder should be computed uniquely, we get m=1 type constraint (21), such that p=8 data points 
are required (excluding special configurations). 

If we get more data points, we have to adjust some constraints. We consider three ways to deal with this problem: algebraic, 
geometric and general TLS fitting. The latter contains the first two as a special case. Note that these terms are not always used 
synonymously in the literature. We refer to the terminology used by [7] and others.

( )det 0U = (21)

{ } { } { }, , , , , , , , ,

0xi ij jy xi ij jz yi ij jz
i j x y z i j x y z i j x y z

q u q q u q q u q
= = =

= = =∑ ∑ ∑ (22)

2 2 2
x x y y z za a a wλ λ λ=⋅ ⋅= =⋅  (23)

( ) 2 2 2 3det x y zU a a a w⋅ ⋅ ⋅ =  (24)

,  1, ,T T
i i iq Uq v q w i p+ = = … (25)
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In algebraic fitting we adjust the constraint that the observed data points are located on the surface, by introducing a vector of 
residuals  by 

and defining the objective function 

with some suitable vector norm. If the Euclidian norm is used, we arrive at a nonlinear least squares problem with constraints, 
for which the method of Lagrange multipliers is the standard method.

The algebraic fitting is the most common technique applied in CAD, reverse engineering and computer vision technology. Below 
we highlight some results in this field:

Lukacs et al. (1998) avoid constraints by eliminating m parameters from the vector β. This must be done for each type of surface 
(ellipsoid, cylinder, etc.) separately, but saves some computational costs [12].

Zhouchen Lin and Yameng Huang (2015) elegantly employ homogeneous coordinates to formulate the quadric fitting problem. 
The authors are concerned with the required positive semidefiniteness of U in ellipsoid/paraboloid-fitting. Here the Alternating 
Direction Method of Multipliers (ADMM) is prefered over Semidefinite Programs (SDP). In our paper we are not concerned with 
this part of the problem [13].

Reza and Sengupta AS (2017) develop a general algorithm for algebraic fitting ellipsoids of arbitrary shape and orientation. They 
use a type constraint to ensure that the resulting quadric is in fact an ellipsoid. Their method is based on iteratively improving the 
fit by changing the orientation of the coordinates to align along the axes of the ellipsoid using iterative random transformations 
[14].

Experiences show that algebraic fitting is biased and less suited for practial application [7]. The reason is that the algebraic 
distance (26) between point qi and the quadric surface with parameters U,v,w is rarely equivalent to the geometric distance. 
As a remedy to this, Taubin’s method is employed, it is also known as „gradient weighted algebraic fitting“. The core idea is to 
introduce weights in (27) compensating for the defect of algebraic with respect to geometric fitting. This method is widely used, 
e.g. by Andrews and Séquin (2014) [4,15]. The advantage of algebraic fitting is its minimal computational costs.

Geometric fitting minimizes the distances between data points and the surface.

Example 4: Fitting a sphere to data points in the least squares sense means minimizing the objective function

Where symbols are used as in (14). Truly geometric fitting is computationally more costly, but can well be managed by the 
method of „orthogonal distance fitting “proposed by Sung Joon Ahn et al. (2002), Sung Joon Ahn (2004) [6]. This method is used 
by Chernov and Ma (2011) and others [7].

Al-Subaihi and Watson GA (2005) use the term “algebraic fitting”, but go beyond (26), (27) by re-formulating (25) as an operator 
equation [16].

with the adjustment 

minimizing a norm of the matrix [E r]. For special norms, this approach includes the approaches presented in the preceding 
section as special cases, but already goes beyond this into the direction of what is nowadays called total least squares (TLS) fitting: 
Also the operator H is adjusted.

Total least squares fitting

 1: ,  , ,T T
i i i ir q Uq v q w i p+ − = …= (26)

( ) 2:p rβΩ = (27)

( )
2

,  q r q q riΩ = − −∑ 

(28)

1
 

1
H wβ

 
 =  
 
 

 (29)

( )
1

1
H E w rβ

 
 + = + 
 
 

 (30)
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Making the TLS approach more explicit, we allow for different observation errors in all 3p  observed point coordinates. Given 
the observation vector 

and the corresponding 3 3p p×   covariance matrix 

The TLS objective function reads 

subject to the p quadratic point-on-quadric constraints (25) as well as the quadratic uniqueness constraint (5b). If the solution 
should be restricted to a special geometric shape like a plane, sphere etc., more linear and/or quadratic constraints must be added, 
like (21) … (24).

In some cases this model setup seems to be unnecessarily expensive. E.g. for a plane or sphere some parameters can be eliminated. 
This would reduce the TLS fitting to simple geometric fitting like in (28). But the proposed procedure is extremely general: All 
types of quadrics can be treated in a unified approach.

Example 2 (cont’d): If an ellipsoid of prescribed lengths of the semiaxes should be fitted to p=20  data points, we get three type-
constraints. This gives in total a redundancy of 10.

We come up with a Gauss-Markov model with constraints [17]. The solution procedure is known as least squares estimation with 
constraints for parameters and takes advantage of the method of Lagrange multipliers. The extended objective function now reads 

where  0 1, , , , ,p mk k l l… …  are the Lagrange multipliers and ( ) 0B β =  denotes a system of m type-constraints, if any.
For the sake of simplicity, let us restrict to the case 2IσΣ = . The solution is found as a stationary point of Ω, where the necessary 
conditions read 

Example 1 (cont’d): If an elliptic cylinder should be fitted to p=20 data points, we get
  1. 60 known observation values (31)
  2. 20 quadratic constraints (26) that the true points lie on the quadric
  3. 1 cubic type constraint (21)
  4. 1 quadratic uniqueness constraint (5b)
  5. 10 parameters (4) of the quadric
  6. 60 unknown true values of the coordinates (31) of the observation points,
  This gives in total a redundancy (degrees of freedom) of 60 + 22 – 70 = 12.

we desire the TLS estimates of the parameters of a quadric (1) as well as of the true values of the coordinates of the observation 
points 

( )
1 1 1 1

1
1, , , , , , , ,

T

x x

xx zz x y z x zp

p zp p zp

x q x q
u u v v v w q q

z q z q

−

   − −
   

Ω … … = Σ   
   − −   

 

( )1 1 1, , , , , , , ,
T

p p px x y y z z… … … (31)

1 1

1

2

2

p

p p

x x z

x z z

σ σ

σ σ

 
 

Σ =  
  
 



  



(32)

( )1 1 1, , , , , , , ,
T

x xp y yp z zpq q q q q q… … … (33)

(34)

( )
1 1 1 1

1
1 0 1, , , , , , , , , , , , , ,

T

x x

xx zz x y z x zp p m

p zp p zp

x q x q
u u v v v w q q k k l l

z q z q

−

   − −
   

Ω … … … … = Σ +   
   − −

′

  

 

( ) ( ) ( )2 2 2 2 2 2 2 2 2
0

1

1
p

T T T
xx xy xz yy yz zz x y z i i i i

i

k u u u u u u v v v l B k q Uq v q wβ
=

+ + + + + + + + − + + + −∑

(35)
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This system of 11+4p+m cubic (with some possibly linear or quadratic) equations must be solved for the  11+4p+m unknowns.

Example 1 (cont’d): If the quadric should be an elliptic cylinder, the single type-constraint (21) and its derivatives read 

and the rest vanishing. 

Due to the nonlinearity of the system (36), we must start the procedure with good initial guesses for the unknowns. For this 
purpose the TLS fitting is best replaced by algebraic fitting. Uniqueness constraint (5b) is less convenient than (5a) because it is 
nonlinear. If some care is taken for the singularity mentioned above, (5a) is recommended here.

Initial guesses

1Tc β = (38a)

T T
i i iq Uq v q w+ = (38b)

( ) 0B β = (38c)

(37)

( ) 2 2 22 0xx yy zz xy xz yz yz xx xz yy xy zzB u u u u u u u u u u u uβ = + − − − =

2
yy zz yz

xx

B u u u
u
∂

= −
∂

2 2xz yz xy zz
xy

B u u u u
u
∂

= −
∂

2
xx yy xy

zz

B u u u
u
∂

= −
∂



(36)

0,    1, ,T T
i i iq Uq v q w i p+ − = = …

( ) 0B β =

2 2 2 2 2 2 2 2 2 1 0xx xy xz yy yz zz x y zu u u u u u v v v+ + + + + + + + − =

( )2 / 2 0,    1, ,xi i
i xi xx yi xy zi xz x

q x k q u q u q u v i p
σ
−

+ + + + = = …



( )02 0T
x i xi

x

Bk v l k q
v

β∂
+ + =

∂ ∑

( ) 0T
i

Bl k
w

β∂
− =

∂ ∑




( ) 2
02 0T

xx i xi
xx

Bk u l k q
u

β∂
+ + =

∂ ∑

( )02 2 0T
xy i xi yi

xy

Bk u l k q q
u

β∂
+ + =

∂ ∑
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In all other cases we can start with fitting a general quadric to all points as above and then we modify it slightly into the desired 
shape.

In Figure 1 a flow chart of the TLS fitting algorithm is displayed.

Example 1 (cont’d): We modify the general quadric to a cylinder by replacing the least absolute eigenvalue of U by zero, etc. 

Figure 1: Flow chart of TLS fitting

For  1 , ,x zpq q…  we can directly use the observed coordinates (31) as initial guesses. Note that (38a),(38b) are linear equations for 
β. Some type-constraints (38c) are fully linear equations for β, e.g. in the case of

For the general quadric there is even no such constraint (38c). All those cases result in a fully linear overdetermined system of 
equations (38a)-(38c) for β, which can be solved by a standard least squares procedure. Later, we can take advantage of constraint 
(5b) by rescaling of the intial parameters, if desired.

  1. plane, eq. (11)
  2. sphere, eq. (13)
  3. quadric with prescribed principal axes, eq. (22)

Example 3 (cont’d): The matrix U  of the general quadric should have eigenvalues approximately equal to 2 2 2, ,x y za a a− − − . We modify 
the general quadric to an ellipsoid with prescribed semiaxes , ,x y za a a  by replacing U with 
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Inserting these initial guesses into the system of equations (36), it remains an over determined linear system of equations for the 
Lagrange multipliers 0 1, , , , ,p mk k l l… … , which can be solved by a standard least squares procedure.

Given a cloud of p points on an elliptic cylinder in 3D space with oblique axis, the algebraic fitting as an extension of (27) for the 
type constraint (21) requires minimizing the following target function: 

with the choice ( )0, ,0,1 Tc = …  in (5a). (The latter means that w is set to unity because we know that the cylinder does not pass 
through the origin). l is the Lagrange multiplier for the type constraint (21). The necessary condition of a stationary point results 
in solving the following system of 10 nonlinear equations 

For the TLS solution the system of  4p+12 nonlinear equations as a specialization of (36) using (37) reads

Application: Fitting a cylinder in oblique position

( )2 2
02 0yy xx zz xz i yik u l u u u k q+ − + =∑

( )2 2
02 0xx yy zz yz i xik u l u u u k q+ − + =∑

( )0 2 2 0xy xz yz xy zz i xi yik u l u u u u k q q+ − + =∑

( )0 2 2 0xz xy yz xz yy i xi zik u l u u u u k q q+ − + =∑

( ) ( ) ( )2
' , , , , , det 1T T

xx zz x y z i i iu u v v v l l U q Uq v qΩ … = ⋅ + + −∑ (40)

( ) ( )2 22 1 0T T
yy zz yz xi i i il u u u q q Uq v q− + + − =∑

( ) ( )2 1 0T T
xz yz xy zz xi yi i i il u u u u q q q Uq v q− + + − =∑

( ) ( )2 1 0T T
xy yz xz yy xi zi i i il u u u u q q q Uq v q− + + − =∑

( ) ( )2 1 0T T
xy xz xx yz yi zi i i il u u u u q q q Uq v q− + + − =∑

( ) ( )2 22 1 0T T
xx yy xy zi i i il u u u q q Uq v q− + + − =∑

( )1 0T T
xi i i iq q Uq v q+ − =∑

( )1 0T T
yi i i iq q Uq v q+ − =∑

( )1 0T T
zi i i iq q Uq v q+ − =∑

2 2 22 0xx yy zz xy xz yz yz xx xz yy xy zzu u u u u u u u u u u u+ − − − =

( ) ( )2 22 1 0T T
xx zz xz yi i i il u u u q q Uq v q− + + − =∑

(41)

2

2

2

0 0
0 0
0 0

x
T

y

z

a
Q a Q

a

−

−

−

 
 
 
 
 

(42)
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We set up a numerical experiment to test the performance of both fittings:
1. By MATLAB’s pseudo random generator we generate p=20 points randomly distributed on an elliptic cylinder with semiaxes 1 
and 0.6 of the ellipse. The axis points into the oblique direction of vector . The equation ( )T0.48 0.60 0.64 of the true cylinder reads

2. The observed coordinates are falsified by uncorrelated Gaussian noise, again generated by MATLAB’s pseudo random generator. 
The chosen standard deviation is σ = 0.01.
3. The criterion of convergence of the iterative fitting is that the maximum change of all estimated U,v elements of two successive 
iteration steps is less than 10-6 w.
4. As an initial guess we analytically fit a general quadric to these points, which is a perfect linear least squares problem. Later the 
matrix U is spectrally decomposed and the smallest eigenvalue of U is replaces by zero.
5. In the TLS fitting the observed coordinates x,y,z are used as initial guesses for 1, ,x zpq q… , and the Lagrange multipliers 0 , , ,pk k l…  
are initially guessed as zero.
6. The common iterative Newton method is used to solve the nonlinear systems.

It is now interesting to see, if the iteration converges successfully. But it would not be good to compute this experiment only once 
because we could be lucky or unlucky with the results. It is better to perform multiple experiments in a Monte Carlo (MC) style 
approach. 1000 experiments have shown to give a realistic picture of the performance.

   0.7139 0.1078 0.4343
0.1078    0.2395 0.1437 1
0.4343 0.1437    0.4605

Tq q
− − 

 − − = 
 − − 

02 0y i yik v k q+ =∑

02 0z i zik v k q+ =∑
0ik =∑

2 0,    1, ,
2

xi i x
i xi xx yi xy zi xz

q x vk q u q u q u i p
σ
−  + + + + = = … 

 

2 0,    1, ,
2

yi i y
i xi xy yi yy zi yz

q y v
k q u q u q u i p

σ
−  

+ + + + = = … 
 

2 0,    1, ,
2

zi i z
i xi xz yi yz zi zz

q z vk q u q u q u i p
σ
−  + + + + = = … 

 

2 2 2 2 2 2 2 2 2 1 0xx xy xz yy yz zz x y zu u u u u u v v v+ + + + + + + + − =

0,    1, ,T T
i i iq Uq v q w i p+ − = = …

2 2 22 0xx yy zz xy xz yz yz xx xz yy xy zzu u u u u u u u u u u u+ − − − =

( )0 2 2 0yz xy xz xx yz i yi zik u l u u u u k q q+ − + =∑

( )2 2
02 0zz xx yy xy i zik u l u u u k q+ − + =∑

02 0x i xik v k q+ =∑

Figure 2 shows the convergence of the simple Newton method. The algebraic fitting (41) converges in only 81% of the MC 
experiments. Here between 11 and 16 iterations are required to meet the criterion of convergence. Here we should use some 
more elaborated nonlinear optimization method like Levenberg-Marquardt [18]. For TLS fitting (42) the simple Newton method 
always converges after 4 or 5 iterations. However, remember that the workload per iteration is much higher, because (42) has 
4p+12 = 92 equations and unknown quantities, while (41) has only 10 [19].
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Figure 3 shows the recovery of the true cylinder. Note that the left columns of Figure 3 shows only the 81% convergent experiments. 
In the first row the difference of the computed oblique axis of the cylinder from the true one in form of histograms of their spatial 
angle is displayed. The difference is about 1 degree. The performance of both fitting methods is almost identical.

The second and third row of Figure 3 shows the computed nonzero eigenvalues of U in form of histograms. Remember that the 
true eigenvalues are 1.0000 and 1/0.6²=2.7778, and this is where the peaks of all histograms are found. Although the difference is 
small, we see that the peaks of the left histograms are lower than of the right. From that we can conclude that algebraic fitting is 
slightly outperformed by the TLS fitting. We guess that once convergence is achieved also for the 19% divergent cases, they will 
contribute to the tails, rather than to the peaks of the left histograms of (Figure 3). 

Figure 2: Results for convergence of the iteration. Left: algebraic fitting (Note: The bar at “0 iterations” shows the frequency of cases, where the iteration did 
not converge). Right: TLS fitting

Figure 3: Deviations of the computed cylinder from the true one. Left: algebraic. Right: TLS fitting
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