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Journal of Mathematical and Statistical Analysis

Finsler geometry is an alternative approach to geometrization of fields and its fundamental idea can be traced of Riemann geometry 
so that Finsler geometry is a nearest generalization of Riemannian metric geometry. Finsler geometry was first applied in gravitational 
theory and this application lead to corrections to observational results predicted by general relativity. It’s well known that there are 
various approaches to Finsler formulation of the general relativity and gauge field theories in the spacetime. Euler-Lagrange and Hamilton 
equations often used for modeling of mechanical systems. In this study, we will present Euler-Lagrange and Hamilton equations often 
used for modeling of mechanical systems of motion on Finsler manifolds such that they represent the dynamic state of the mechanical 
system. Also, implicit solutions of the differential equations found in this study are solved by Maple computation program.

Introduction
A classical field theory explains the study of how one or more physical fields interact with matter which is used quantum and 
classical mechanics of physics branches. Also, a unified theory and it’s the metric has been thought as the gravitational potential, 
as in general relativity, and the corresponding forms are thought as the electromagnetic potentials. Weyl’s unified theory and it’s 
the metric has been thought as the gravitational potential, as in general relativity, and the corresponding forms are thought as 
the electromagnetic potentials. Euler-(Lagrangian) and Hamiltonian models arise to be a very important tool and they present a 
simple method to describe the model for orbits of moving objects in the electromagnetic field.

There are many applications of differential geometry or mathematical physics. These applications are used in many areas of 
disciplines. There are many studies about Lagrangian and Hamiltonian dynamics, mechanics, formalisms, systems, equations and 
Finsler geometry [1]. Tekkoyun and Celik presented a new analogue of Euler-Lagrange and Hamilton equations on an almost 
Kähler model of a Finsler manifold [2]. Tekkoyun and Yayli presented generalized-quaternionic Kähler analogue of Lagrangian 
and Hamiltonian mechanical systems [3]. Wu established a relative volume comparison theorem for minimal volume form of 
Finsler manifolds under integral Ricci curvature bound [4]. Vries shown that the Hamiltonian and Lagrangian motion equations 
have a very simple interpretation in relativistic quantum mechanics [5]. Udriste and Neagu presented the basic properties of the 
scalar product along a curve and they investigated the variational formulae for the p-energy functional on a Finsler manifold [6]. 
Bercu showed the gradient method on Finsler manifold as to how to use the direction y for obtaining a suitable descent algorithm 
[7]. Szilasi and Tóth deduced consequences on vector field on the underlying manifold of a Finsler structure having one or two of 
the mentioned geometric properties [8]. Tayebi and Peyghan constructed a new class of Finsler metrics which is an extension of 
the class of Berwald metrics [9]. Bejancu constructed the transversal vector bundle of a coisotropic submanifolds of pseudo-Finsler 
manifold and obtained all structure equations of the degenerate immersion [10]. Lovas and Szilasi propose a new and complete 
proof of the theorem, discovered by Detlef Laugwitz: complete and connected finite dimensional Finsler manifolds admitting 
a proper homothety are Minkowski vector spaces [11]. Abate and Patrizio showed that a complex Finsler metric of constant 
holomorphic sectional curvature-4 satisfying the given symmetry condition on the curvature is necessarily the Kobayashi metric 
[12]. Almost contact Finsler structures on vector bundle are defined by Yaliniz and Caliskan and the condition of normality in 
terms of the Nijenhuis torsion N{φ} of almost contact Finsler structure is obtained [13]. Vacaru considered some classes of exact 
solutions instring and Einstein gravity modelling Lagrange-Finsler structures with solitonic pp--waves and speculate on their 
physical meaning [14]. Kasap demonstrated Weyl-Euler-Lagrange and Weyl-Hamilton equations on R{n}²ⁿ which is a model of 
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tangent manifolds of constant w-sectional curvature [15]. Kasap submitted Weyl-Euler-Lagrange equations of motion on flat 
manifold [16]. Miron and Anastasiei and their other colleagues there are summarized a number of results on almost Kähler-
Lagrange-Finsler/Hamilton-Cartan geometries and generalizations with applications in mechanics [17].

(F1) F(x,y)>0; ∀xεM, ∀y≠0.
(F2) F(x,λy)=|λ|F(x,y); ∀λεR, ∀(x,y)εTM.
(F3) the fundamental tensor gij(x,y)=(1/2)((∂²F²)/(∂yi∂yj)) is positive definite; ∀xεM,

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( )

1  , 0; , 0.
2  , , ; , , .

3     , 1/ 2 ² ² /    ; ,i j
ij

F F x y x M y
F F x y F x y R x y TM

F the fundamental tensor g x y F y y is positive definite x M

ε
λ λ λε ε

ε

> ∀ ∀ ≠
= ∀ ∀

= ∂ ∂ ∂ ∀  
(F4) F is Cc at every point (x,y)εTM with y≠0 and continuous at every (x,0)εTM. Then, the absolute Finsler energy is F²(x,y)=gij(x,y)
yiyj.

Definition 2: [ ]:  ,    Letc a b M be a C∞→  regular curve on M. For any two vector fields ( ) ( ) ( )( ) ( ) ,/ |i i
c tX t X t x= ∂ ∂ ┊ ( ) ( ) ( )( ) ( )/ |i iY t Y t x c t= ∂ ∂ ┊ along the curve c 

and the scalar product ( ) ( ) ( ) ( )
.

( ( ), , i j
ijg X Y c t g c t C t X Y=  along the curve c.

Definition 3: Let M be a differentiable manifold of dimension (2n+1) and suppose J is a differentiable vector bundle isomorphism 
J:TM→TM such that J:TM→TM is an almost complex structure for TM.

Definition 4: An almost complex structure J on M assigns to each pЄM a linear map Jp:TpM→TpM that is smooth in p and satisfies 
Jp²=-Id for all p. The pair (M,J) is called an almost complex manifold. Any complex manifold M is also an almost complex manifold. 
In three dimensions, the vector from the origin to the point with Cartesian coordinates (x,y,z) can be written as [18].

Lemma 1: Let M be a smooth manifold. If M admits a complex structure A, then M admits an almost complex structure J. Let 
dimCM=m and (Z,U) be any holomorphic chart inducing a coordinate frame ∂x₁,∂y₁,...,∂xm,∂ym. Then J is given locally as

Where 1≤i≤m and pЄU [19]

Suppose M is a smooth manifold. Recall that a smooth curve in M is a smooth map : ,  I Mγ →  where I is an interval in R. For any 
aЄI, the tangent vector of γ at the point γ(a) is

where d/dt is the standard coordinate tangent vector of R. Let X is a smooth vector field on M. We say that a smooth curve γ: I→M 
is an integral curve of X if for any tЄI,

A Finsler manifold is a differentiable manifold together with the structure of an intrinsic quasisimetric space in which the length 
of any rectifiable curve γ:[a,b]→M is given by the length functional

Definition 1: Let (M,F) be a connected n-dimensional Finsler manifold whose fundamental function verifies F:TM R→  the 
following axioms:

Geodesics in Finsler Spaces

Preliminaries

|( ) ,|i iJp x p y p∂ = ∂┊ ┊

(2)( | ) ,   |  i iJp y p x p∂ = −∂┊ ┊

(5)[ ] ( ( ), ( ))        
b

a

L F t t dtγ γ γ= ∫ 

(1)( )( ) ( )( ) ( )( )i j k / / / .r x y z x x y y z z= + + = ∂ ∂ + ∂ ∂ + ∂ ∂
  

(3)( ) ( )( )( ) ( ) ( )( )( )( ) / /aa d dt a d d dtγγ γ= =

(4)( ) ( ) .    tt X
γ

γ =

Where (X,X)F   is a Minkowski norm on each tangent space TxM. Finsler manifolds non-trivially generalize Riemannian manifolds 
in the sense that they are not necessarily infinitesimally Euclidean.
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This means that the norm on each tangent space is not necessarily induced by an inner product (metric tensor). Due to the 
homogeneity of F the length (5) of a differentiable curve γ:[a,b]→M in M is invariant under positively oriented reparametrizations. 
A constant speed curve γ is a geodesic of a Finsler manifold if its short enough segments [ ],|       c dγ ┊ are length-minimizing in M from 
γ(c) to γ(d). Equivalently, γ is a geodesic if it is stationary for the energy functional

(6)

(7)

(8)

(9)

(10)

(11)

in the sense that its functional derivative vanishes among differentiable curves γ:[a,b]→M with fixed endpoints γ(a)=x and γ(b)=y. 
A Finsler manifold is a differentiable manifold M together with a Finsler function F defined on the tangent bundle of M so that for 
all tangent vectors v. For each tangent vector v, the Hessian of F² at v is positive definite. Here the Hessian of F² at v is the symmetric 
bilinear form

Also known as the fundamental tensor of F at v. Strong convexity of F² implies the subadditivity with a strict inequality if 
u/F(u)≠v/F(v). If F² is strongly convex, then F is a Murkowski norm on each tangent space.

Hermann Weyl (1885-1955) made many fundamental and important contributions to physics. He is most famous for his 1929 
discovery of quantum-mechanical phase invariance. Phase invariance known more properly as gauge invariance that it is symmetry 
and underlies all modern quantum theories. Throughout this section, M donates a smooth manifold of dimension n.

A conformal manifold is a differentiable manifold equipped with an equivalence class of (pseudo) Riemann metric tensors, in 
which two metrics g₂ and g₁ are equivalent if and only if

Where Ψ>0 is a smooth positive function. An equivalence class of such metrics is known as a conformal metric or conformal 
class and a manifold with a conformal structure (8) is called a conformal manifold [20]. A change in given by the global gauge 
transformation

Where λ is an arbitrary constant, would have absolutely no effect on the Lagrangian.
Action Lagrangians are invariant with respect to the replacement

Can be made without changing anything essential. Where Ψ is a wave function and λ is an arbitrary function of space and time. 
(10) Is called a local gauge transformation

Weyl’s gauge theory sprang from an even earlier (1918) theory in which Weyl demanded that Einstein’s theory of general relativity 
should be invariant with respect to the similar replacement

Which we shall call a metric gauge transformation (11) and it has emerged effect of these transformations on Riemannian and 
non-Riemannian geometry. Also, it is remarkable that the Weyl tensor can be deduced by simply demanding that it be invariant 
with respect to this transformation. Weyl, using this gauge principle, was able to derive all of electrodynamics from a generalized 
Einstein-Maxwell Lagrangian. Weyl noticed that the magnitude of an arbitrary vector ξμ would undergo a rescaling under a gauge 
transformation given by

Gauge Theory and Conformal Weyl Geometry

2[ ] (1/ 2) ( ( ), ( ))    
b

a

E F t t dtγ γ γ= ∫ 

( ) ( ) ( ) ( )( ) ( ) 0, 1/ 2 ² / ² ,  |   v s tg X Y s t F v sX tY = == ∂ ∂ ∂ + + ┊

( ) ( )ix e xλΨ → Ψ

( ) ( )( )      i xx e xλΨ → Ψ

( ) ( )( )          xg x e g xλ
µν µν→

² ,  g µ ν
µνξ ξ ξ=

² g µ ν
µνξ ξ ξ′ = ′

(12)( ) ², xeλ ξ=

2
2 1g g  = Ψ
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Definition 5: Two Riemann metrics g₁ and g₂ on M are said to be conformally equivalent if there exists a smooth function f:M→R 
with

In this case, g₁~g₂. A pair (M,G), a conformal structure on M is an equivalence class G of Riemann metrics on M, is called a 
conformal structure.

Definition 6: A compatible torsion-free connection is called a Weyl connection. The triple (M, G,∇ ) is a Weyl structure. A Weyl 
manifold is a conformal manifold equipped with a torsion free connection preserving the conformal structure, called a Weyl 
connection.

(Proof see [22]).       

Definitions 7: Define a function F:{ 1-forms on M }×G→{ Weyl connections } by F(g,ω)=∇ , where ∇ is the connection guaranteed 
by Theorem 2. We say that ∇  corresponds to (g,ω).

Proof: F is surjective by Theorem 3. In fact, Theorem 3 shows that given a compatible, torsion-free connection ∇ , then for every 
gЄG, there exists a 1-form ω with F(g,ω)=∇ .

Where G is a conformal structure. Note that a Riemann metric g and a one-form ω determine a Weyl structure, namely F: G→∧1M 
where G is the equivalence class of g and ( ) .  fF e g dfω= −  

Therefore ( ) ( )( ).  X g df X Xη∇ = − + On the other hand, ( ) 0X g X gω∇ + =  and .  dfω η= + Conversely, suppose .  dfη ω= − Set ( ), .  F g ω∇ = To show ( ), , fF e g η∇ =  
it suffices, by the uniqueness of Theorem 2, to show

Let’s show the truth of this statement. ( ) ( ) ( ) ( ) ( )  .  f f f
X Xe g e df X g e g and X X df Xη ω∇ = + ∇ = − ( ) ( ) ( ) ( ) ( )( )     f f f f f

X Xe g X e g e df X g e g X df X e gη ω∇ + = + ∇ + −

Such a geometric structure was introduced by Weyl (in 1922) in an attempt to unify gravity with electromagnetism [24]. Let (M,g) is 
conformally flat if for each point x in M, there exists a neighborhood U of x and a smooth function f defined on U such that (U, e2fg) 
is flat. The function f need not be defined on all of M [25].

Theorem 3: Let ∇be a torsion free connection on the tangent bundle of M and m≥6. If (M, g,∇ , J) is a Kähler-Weyl structure, then 
the associated Weyl structure is trivial, i.e. there is a conformally equivalent metric

Proof: Suppose ( ) ( ), , .  fF g F e gω η= = ∇  We have 

Proposition 1: F is subjective.

Theorem 1: Let ∇  be a connection on M and gЄG a fixed metric. ∇  is compatible with (M,G)⇔ there exists a 1-form ω with 
( ) 0 X g X gω∇ + =  [22, 23].

and he wondered if such a regauging would alter any essential physics. Today, the gauge principle is arguably the most powerful 
concept in all of modern physics. This gauge principle underlies all of the Yang-Mills theories and is a key component in string 
theory and its more recent variant, M theory [21].

(13)

Theorem 2: To each metric g∈G and 1-form ω, there corresponds a unique Weyl connection ∇ satisfying ∇Xg+ω(X)g=0. Here, 
∇ is given by the equation [22].

( ) ( )( ) ( ) ( ) [ ]( ) ( )( )( ) {, 1/ 2 , , , , ,     Xg Y Z X g Y Z X g Y Z g X Z Y Y g X Zω∇ = + − + ( ) ( ) [ ]( ) ( )( ) ( ) ( ) [ ]( ), , , , , , ,         }Y g Z X g Y X Z Z g X Y Z g X Y Z Y Xω ω+ − − − − (14)

( ) ( ) ,fF e g F g df= − (15)
Proposition 2: 

( ) ( ) ( ) ( )0    f f f f f
X Xe g X e g X e g e g X e gη η= ∇ + = + ∇ + ( ) ( ) . f f f

Xdf X e g e g X e gη= + ∇ + (16)

( ) ( ) 0.  f f
X e g X e gη∇ + = (17)

( ) ( ) ( )      f f f f
Xe df X g e g X e g df X e gω= + ∇ + −

( ) 0.( )  f
Xe g X gω= ∇ + = (18)

(19)

( ) ( ), ,   .    fF g F e g iff df Soω η η ω= = −

2 1g e g  f=

2
1g ,fe g=
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So that (M,g₁,J) is Kähler and so that ∇=∇ g₁ [ proof see 26].

Weyl transformation is a local rescaling of the metric tensor:

which produces another metric in the same conformal class. A theory or an expression invariant under this transformation is 
called conformally invariant, or is said to possess Weyl symmetry. The Weyl symmetry is an important symmetry in conformal 
field theory [27]. Weyl curvature tensor is a measure of the curvature of spacetime or a pseudo-Riemannian manifold. Like the 
Riemannian curvature tensor, the Weyl tensor expresses the tidal force that a object feels when moving along a geodesic.

Definitions 8: A Finsler manifold (space) is a pair ( )( ), ,nF M F x y= where M is a real n-dimensional differential manifold and F:TM→R 
a scalar function which satisfy the following axioms:
i) F is a differentiable function on the manifold  { }TM TM \ 0= and F is continuous on the null section of the projection π:TM→M.
ii) F is positive function.
iii) F is positively 1-homogeneous on the fibers of tangent bundle TM.
iv) The Hessian of F² with elements.

In this section, we recall some structures given in [28, 29].

is positively defined on TM  . Where gij is a covariant symmetric of 2 order distinguished tensor field (d-tensor field) defined on the 
manifold TM   The function F(x,y) is called fundamental function and the d-tensor field gij is called fundamental (or metric) tensor 
of the Finsler space ( )( ), ,nF M F x y= . 

It is easy to see that F is well defined on TM, F²=-I and it is determined only by the fundamental function F of the Finsler space 
Fⁿ. Also,

(2) ( )( ) ( )/ / ,   i iF x yδ δ = −∂ ∂  

(23)

Let (dxi,δyi) be the dual basis of the adapted basis ( ) ( )/ ,  / ).   i jx yδ δ ∂ ∂ Then, the Sasaki-Matsumoto lift of the fundamental tensor gij 
can be introduced as follows:

Consequently, G is a Riemann metric on determined only by the fundamental function F of the Finsler space Fⁿ and the horizontal 
and vertical distributions are orthogonal with respect to it.

i) The pair (G,F) is an almost Hermitian structure on ( ) ( )2 2; , ; ,nH G F H G F= = .
ii) The almost symplectic 2-form associated to the almost Hermitian structure (G,F) is

(24)

A Finsler space Fⁿ=(M,F) can be thought as an almost Kähler space on the manifold { }TM T ,M \ 0=  called the geometrical model of the 
Finsler space Fⁿ. If we consider the Cartan nonlinear connection Ni

j of the Finsler space ( ), ,nF M F=  then we can respectively define 
almost complex structures F and F∗  on TM and T∗M by:

( ) ( )(2 ) ,  x
ab abg x e g xω−→ (20)

Finsler Geometry

( ) ( ) ( ) ( )( ), 1/ 2 ² ² / i j
ijg x y F y y= ∂ ∂ ∂ (21)

( )( ) ( )/ / . i iF y xδ δ∂ ∂ = (22)

/ ( ) / ( ) ( , )( / ( )) , i i i i
jx x N x y y TMδ δ δ δ δ δ= − ∈

( )( ) ( )/ / ,    
Hi ix xδ δ∂ ∂ =

( , ) *       i i i i
jy dx N x y dy T Mδ = + ∈

( ) .    
Hi idy yδ=

.  i j i
ij ijG g dx dx g y yjδ δ= ⊗ + ⊗

( ) ( )
( )

*

*

 1     ,

.    

i i

i i

F dx y

F y dx

δ

δ

= −

=
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iii) The space ( )2 ; ,nH TM G F= is an almost Kähler space, constructed only by means of the fundamental function F of the Finsler 
space Fⁿ.

The space H²ⁿ=TM  ( ;G,F) is called the almost Kähler model of the Finsler space Fⁿ.

Remarking that the following tensor field on TM  ,

(26) Is the homogeneous lift to TM of the fundamental tensor field gij of a Finsler space Fⁿ, where a>0 is a constant, imposed by 
applications (in order to preserve the physical dimensions of the components of G and where 2y is the square of the norm of the 
Liouville vector field:

and for ( ) ( ) ( ) ( )( ), 1/ 2 ² / .   j i
i ijy g x y y F y= = ∂ ∂   

Let us prove that the almost complex structure F, defined by (22) does not preserve the property of homogeneity of the vector fields. 
Indeed, it applies the 1-homogeneous vector fields ( )( ) ( )/ , 1,ix i nδ δ =  onto the homogenous vector fields ( ) ( )/ ,  1, , . iy i n∂ ∂ = …  We can 
eliminate this inconvenient by defining a new kind of almost complex structure F: ( ) ( ) , TM TMχ χ→  
setting: 

Proposition 3: If we extend the equation (28) by means of conformal structure [23], (19, 20), we can give equations as follows:

Such that are base structures. Where F W is a conformal complex structure to be similar to an integrable almost complex structure 
F given in (28). Similarly, F *w is the dual of F w structure and are defined the following as:

such that is base conformal complex structure.

These dynamic equations are illustrated as follows [33-35].

Lagrange Dynamics Equations

Lemma 2: The closed 2-form on a vector field and 1-form reduction function on the phase space defined of a mechanical system 
is equal to the differential of the energy function 1-form of the Lagrangian mechanical systems [30].

Definitions 9: Let M be an n-dimensional manifold and TM its tangent bundle with canonical projection τM:TM→M. TM is 
called the phase space of velocities of the base manifold M. Let L:TM→R be a differentiable function on TM called the Lagrangian 
function. Here, L=K-P such that K is the kinetic energy and P is the potential energy of a mechanical system. In the problem of a 
mass on the end of a spring, x² / 2  ² / 2, T m and V kx= =  so we have x² / 2 ² / 2 L m kx= −  . We consider the closed 2-form and base space (J) 
on TM given by ( )( ). L d L d JΦ = − = −Jd d Consider the equation

(25)( ), .    i j
ijg x y y dxθ δ= ⊗

(26)

(27)

(28)

(29)

( ) ( )( )* 2F / ,   i i
w dx y a e yλδ−= − ‖ ‖

( ) ( )( )* 2F / ,  i i
w y a y e dxλδ = ‖ ‖ (30)

(31). L Li dEξΦ =

( ) ( )( ) ( ) ( ))G , ² / ² , ,     , .   i j i j
ij ijg x y dx dx a y g x y y y x y TMδ δ= ⊗ + ⊗ ∀ ∈ ‖‖

( ) ( )² , ² , ,  i j i
ij iy g x y y y y y F x y= = =‖‖

( )( ) ( )( ) ( )( ))F / / / ,    i iy a y xδ δ∂ ∂ = ‖‖

( ) ( )( )*F / ,   i idx y a yδ= − ‖‖

( ) ( )( )*F / .    i iy a y dxδ = ‖‖

( )( ) ( )( ) ( )( )2F / / / ,  i i
w x y a e yλδ δ −= − ∂ ∂ ‖‖

( )( ) ( )( ) ( )( )2F / / / ,    i i
w y a y e xλ δ δ∂ ∂ = ‖‖

( )( ) ( )( ) ( )( )F / / /           i ix y a yδ δ = − ∂ ∂ ‖‖
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Where iξ is reduction function and ( ) L Liξ ξΦ = Φ is defined in the form. Then ξ is a vector field, we shall see that (31) under a certain 
condition on ξ is the intrinsically expression of the Euler-Lagrange equations of motion. This equation (31) is named as Lagrange 
dynamical equation. We shall see that for motion in a potential, EL=VL-L is an energy function and  V Jξ= a Liouville vector 
field. Here dEL denotes the differential of E. The triple ( ), ,LTM ξΦ  is known as Lagrangian system on the tangent bundle TM. If it 
is continued the operations on (31) for any coordinate system then infinite dimension Lagrange’s equation is obtained the form 
below. The equations of motion in Lagrangian mechanics are the Lagrange equations of the second kind, also known as the Euler-
Lagrange equations;

Proposition 4: We have ( ) ( ) ( )/ x   /( )L mx and L x kx∂ ∂ = ∂ ∂ = − , so eq. (32) give 
..

m x kx= − sThe Euler-Lagrange equation, eq. (32), gives ( ) ( )
..

/ . m x dV dx= −    
In a two-dimensional setup written in terms of Cartesian coordinates, the potential takes the form V(x,y), so the Lagrangian is 

( ) ( )1/ 2 x² y² , . ( )iL m V x y= + −   So, the three Euler-Lagrange equations may be combined into the vector statement ¨
x .    m V= −∇  

Lagrangian formulation is an important springboard from which to develop another useful formulation of classical mechanics 
known as the Hamiltonian formulation. The Hamiltonian of a system is defined to be the sum of the kinetic (K) and potential 
energies (P) expressed as a function of positions and their conjugate momenta.

Definitions 10: Let M is the configuration manifold and its cotangent manifold T*M. By a symplectic form we mean a 2-form Φ
on *    T M  such that:
(i) Φ is closed, that is 0;dΦ =   
(ii) For each * * *,  :   z T M T M T M R∈ Φ × →  is weakly nondegenerate.

Newton’s second law of motion for the mechanical problem is F=ma. Where, the vector sum of the external forces F on an object 
is equal to the mass m of that object multiplied by the acceleration vector a of the object.

If zΦ in (ii) is nondegenerate, we speak of a strong symplectic form. If (ii) is dropped we refer to Φ  as a presymplectic form. Let 
*(  ),T M Φ  be a symplectic manifold. A vector field * *:  HX T M T M→  is called Hamiltonian if there is a C¹ function *:  H T M R→ such that 

dynamical equation is determined by

We can say that XH is locally Hamiltonian vector field if   HiX Φ  is closed and where Φ shows the canonical symplectic form so 
that ( )* *,  ,  d J JωΦ = − Ω Ω =  a dual of J, ω a 1-form on T*M. The trio * , ,      ( )  HT M XΦ  is named Hamiltonian system which it is defined on the 
cotangent bundle [ ]*  1 .        T M [1]. The vector field X on [ ]*  1 .        T M  given by       Xi dHω =  is called the geodesic flow of the metric g. If ( ): ,     a b T M→  is an 
integral curve of the geodesic flow, then the curve ( )p γ  in M is called a geodesic. Recall from elementary physics that momentum 
of a particle, pi, is defined in terms of its velocity q  q .   i i i iby p m=   In fact, the more general definition of conjugate momentum, valid for 
any set of coordinates, is given in terms of the Lagrangian: ( ) / q .   ( )i ip L= ∂ ∂  Note that these two definitions are equivalent for Cartesian 
variables. In terms of Cartesian momenta, the kinetic energy is given by  2

i1
p / 2 .     n

ii
K m

=
=∑  Then, the Hamiltonian, which is defined to be 

the sum, H=K+P, expressed as a function of positions and momenta, will be given by

Where p=p₁,...,pn. The function H is equal to the total energy of the system. In terms of the Hamiltonian, the equations of motion 
of a system are given by Hamilton’s equations:

( )( ) ( ) ( ) ( )/ / x( ( ) / . )t L L x∂ ∂ ∂ ∂ = ∂ ∂ (32)

Hamilton Dynamics Equations

. HiX dHΦ = (33)

(34)

( ) ( )q / ,  i iH p= ∂ ∂

[31]. The solution of Hamilton’s equations of motion will yield a trajectory in terms of positions and momenta as functions of time. 
Hamilton’s equations can be easily shown to be equivalent to Newton’s equations, and, like the Lagrangian formulation, Hamilton’s 
equations can be used to determine the equations of motion of a system in any set of coordinates.

Using Lemma 2, we obtain conformal Euler-Lagrange equations for quantum and classical mechanics on the almost Kähler model  
2 ( ); ,n

wH TM G F=      of the Finsler space Fⁿ.

Proposition 5: Let F    w
  be a complex structure on the almost Kähler model 2nH  of the Finsler space ,nF and { },    i ix y  be its coordinate 

functions. Let semispray be the vector field      ξ  determined by

( ) ( )p /   i iH q= − ∂ ∂ (35)

Lagrangian Dynamics

2
11

( , ) / 2 ( ,..., )n
i ii

H p q p m P q qn
=

= +∑



J Math Stat Anal 8

                                                                               Volume 1 | Issue 2
 
ScholArena | www.scholarena.com

                    

( )( ) ( )( )/ / ,    i i i iX x Y yξ δ δ= + ∂ ∂ (36)

Where  ..
,   

i
i i i i iX y x Y y X= = = = 

and the dot indicates the derivative with respect to time t. The vector field defined by

is named Liouville vector field on the almost Kähler model ²    H © úof the Finsler space Fⁿ. The maps given by K, ( ):   1/ 2 x² y²),  (    i iP M Rsuch that K m P m gh→ = + = 

are said to be the kinetic energy and the potential energy of the system, respectively. Here ,      im g and h stand for mass of a mechanical 
system having m particles, the gravity acceleration and distance to the origin of a mechanical system on the almost Kähler model
H²   © ú of the Finsler space Fⁿ, respectively. Then L:M→R is a map that satisfies the conditions; i) L=K-P is a Lagrangian function, ii) 
the function determined by ( )F , L wE V L L= −  is energy function. The function iFw induced by F  w

  and denoted by

is called vertical derivation, where ( ),  .         r
iM X Mω χ∈∧ ∈  The vertical differentiation dF  is given by F F , F F ,          [ ]   w w w wd i d i d di= = −     where d is the usual 

exterior derivation. For F  w


w, the closed Kähler form is the closed 2-form given by ΦL=- F   wdd L  such that

Then we have

Let ξ be the second order differential equation (semispray) given by (36). Then we calculate

Energy function and its differential are

and

( ) ( )( ) ( )( ) ( )( ) ( )( )2 2F / / / /   i i i i
wV X y a e y Y a y e xλ λξ δ δ−= = − ∂ ∂ + ‖ ‖ ‖ ‖ (37)

( )( ) ( )( ) ( )( ) ( )( )2 2F / / / / , (  . )i i i i
wd y a e y dx a y e x y F TM TMλ λ δ δ δ−= − ∂ ∂ + → ∧    ‖ ‖ ‖ ‖ (39)

F      L wdd LΦ = − 

( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )2 2/ 2 / / /[ / ²   i i j i i i j iy a e x L y dx dx y a e L x y dx dxλ λλ−= ∂ ∂ ∂ ∂ ∧ − ∂ ∂ ∂ ∧‖ ‖ ‖ ‖

( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )2 2/ 2 / / / /  i i i i i i i ia y e x L x dy dx a y e L L x x dy dxλ λλ δ δ δ δ+ ∂ ∂ ∧ + ∂ ∂ ∧‖ ‖ ‖ ‖

( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )2 2/ 2 / / / ² /i i i i i i i iy a e y L y dx dy y a e L y y dx dyλ λλ− −+ ∂ ∂ ∂ ∂ ∧ − ∂ ∂ ∂ ∧‖ ‖ ‖ ‖

( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )2 2/ 2 / / / .  ]/i i i i i i i ia y e y L x dy dy a y e L L y x dy dyλ λλ δ δ δ δ+ ∂ ∂ ∧ + ∂ ∂ ∧‖ ‖ ‖ ‖ (40)

( )        L Liξ ξΦ = Φ

( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( )2 2/ 2 / / / 2 / /         [ i i i i i i i iy a e x L y X dx y a e x L y X dxλ λλ λ− −= ∂ ∂ ∂ ∂ − ∂ ∂ ∂ ∂‖ ‖ ‖ ‖

( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )2 2/ ² / / ² /         i i i i i i i iy a e L x y X dx y a e L x y X dxλ λ− −− ∂ ∂ ∂ + ∂ ∂ ∂‖ ‖ ‖ ‖

( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )2 2/ 2 / / / /  i i i i i i i ia y e x L x X dy a y e d L x x X dyλ λλ δ δ δ δ− ∂ ∂ − ∂‖ ‖ ‖ ‖

( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )2 2/ 2 / / / ² /  i i i i i i i iy a e y L y X dy y a e L y y X dyλ λλ− −+ ∂ ∂ ∂ ∂ − ∂ ∂ ∂‖ ‖ ‖ ‖

( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )2 2/ 2 / / / 2 /   i i i i i i i ia y e x L x Y dx a y e d L x x Y dxλ λλ δ δ δ δ+ ∂ ∂ + ∂‖ ‖ ‖ ‖

( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )2 2/ 2 / / / ² /      i i i i i i i iy a e y L y Y dx y a e L y y Y dxλ λλ− −− ∂ ∂ ∂ ∂ + ∂ ∂ ∂‖ ‖ ‖ ‖

( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( )2 2/ 2 / / / 2 / /i i i i i i i ia y e y L x Y dy a y e y L x Y dyλ λλ δ δ λ δ δ+ ∂ ∂ − ∂ ∂‖ ‖ ‖ ‖

( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )2 2/ / / / .        i i i i
LE X y a e L y Y a y e L x Lλ λ δ δ−= − ∂ ∂ + −‖ ‖ ‖ ‖

( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )2 2/ / / / .   ]  i i i i i i i ia y e d L y x Y dy a y e L y x Y dyλ λδ δ δ δ+ ∂ − ∂ ∂‖ ‖ ‖ ‖ (41)

(42)

( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )2 2/ 2 / / / ² /   i i i i i i i i
LdE X y a e x L y dx X y a e L x y dxλ λλ− −= ∂ ∂ ∂ ∂ − ∂ ∂ ∂‖ ‖ ‖ ‖

( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( )2 2/ 2 / / / / /          i i i i i i i i i iY a y e x L x dx Y a y e L L x x dx L x dxλ λλ δ δ δ δ δ δ+ ∂ ∂ + ∂ ∂ −‖ ‖ ‖ ‖

(38)( ) ( )1 2 1, ,..., ,...,  ,..., ,w r w i riF X X X X F X Xω ω∑
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( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )2 2/ 2 / / / 2 ² /   i i i i i i i iX y a e y L y dy X y a e L y y dyλ λλ −+ ∂ ∂ ∂ ∂ − ∂ ∂ ∂‖ ‖ ‖ ‖

( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( )2 2/ 2 / / / / / .        i i i i i i i i i iY a y e y L x dy Y a y e L L y x dy L y dyλ λλ δ δ δ δ+ ∂ ∂ + ∂ ∂ − ∂ ∂‖ ‖ ‖ ‖ (43)

Using         L Li dEξΦ = , we find the expressions as follows:

And then

We have the equations with integral curve definition ( ) ( ) ( )( )( )/ ,        t tξ α α α= = ∂ ∂   

such that the equations calculated in (46) are named conformal Weyl-Euler-Lagrange equations constructed on the almost Kähler 
model H ²ⁿ of the Finsler space Fⁿ and thus the triple ( H ²ⁿ,ΦL,ξ) is called a Weyl-Euler-Lagrange mechanical system on the almost 
Kähler model H ²ⁿ of the Finsler space Fⁿ. Hence, if the above equations (46) λ=0 is selected, the equations [2] are obtained.

Using Lemma 2, we present conformal Hamilton equations and Hamiltonian mechanical systems for quantum and classical 
mechanics constructed on the almost Kähler model 2 *(( ); , ) n

wH TM G F=      of the Finsler space Fⁿ.

Proposition 6: Let ω be set a 1-form

Then we have the Liouville form

And the closed form

( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )2 2/ 2 / / / ² /    i i i i i i i iy a e x L y X dx y a e L x y X dxλ λλ− −− ∂ ∂ ∂ ∂ + ∂ ∂ ∂‖ ‖ ‖ ‖

( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )2 2/ 2 / / / ² /    i i i i i i i iy a e y L y Y dx y a e L y y Y dxλ λλ− −∂ ∂ ∂ ∂ + ∂ ∂ ∂‖ ‖ ‖ ‖

( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )2 2/ 2 / / / /   i i i i i i i ia y e x L x X dy a y e d L x x X dyλ λλ δ δ δ δ∂ ∂ − ∂‖ ‖ ‖ ‖

( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )2 2/ 2 / / / /  i i i i i i i ia y e y L x Y dy a y e d L y x Y dyλ λλ δ δ δ δ∂ ∂ − ∂‖ ‖ ‖ ‖

( ) ( )( ) ( ) ( )( )/ / ,         i i i iL x dx L y dyδ δ − ∂ ∂ (44)

( )( ) ( )( )( ) ( ) ( )( )( ) ( )( ) ( )( ) ( ) ( )( )( ) ( ) ( )2 2/ 2 / / / / / / 0, i i iy a e t L y y a e t L y L xλ λλ δ δ− −− ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ + =‖ ‖ ‖ ‖

( )( ) ( )( )( ) ( ) ( )( )( ) ( )( ) ( )( ) ( ) ( )( )( ) ( ) ( )2 2/ 2 / / / / / / 0.  i i ia y e t L x a y e t L x L yλ λλ δ δ δ δ− ∂ ∂ − ∂ ∂ + ∂ ∂ =‖ ‖ ‖ ‖ (45)

(48)

( )( ) ( )( ) ( ) ( )( )( ) ( ) ( )2/ / / / 0,     i iy a t e L y L xλ δ δ−∂ ∂ ∂ ∂ + =‖ ‖

(46)( )( ) ( )( ) ( ) ( )( )( ) ( ) ( )2/ / / / 0,     i ia y t e L x L yλ δ δ∂ ∂ − ∂ ∂ =‖ ‖

( )( ) ( )( ) ( ) ( )( ) ( ) ( )( )/ / / / 0,   i iy a t L y L xδ δ∂ ∂ ∂ ∂ + =‖ ‖

(47)( )( ) ( )( ) ( ) ( )( ) ( ) ( )( )/ / / / 0.        i ia y t L x L yδ δ∂ ∂ − ∂ ∂ =‖ ‖

Hamiltonian Dynamics

( ) ( )( )² / ² .   i i i ia y x x y dyω δ= +‖ ‖

dϕ = − Ω

( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )2 21/ 2 / 2 / / /[ i j j i i j j ia y x e x dx dy a y e x x dx dyλ λλ− −= ∂ ∂ ∧ − ∂ ∂ ∧‖ ‖ ‖ ‖

( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )2 2/ 2 / / /i j j i i j j ia y y e x dx x a y e y x dx xλ λλ δ δ+ ∂ ∂ ∧ + ∂ ∂ ∧‖ ‖ ‖ ‖

( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )2 2/ 2 / / /i j j i i j j ia y x e y dy dy a y e x y dy dyλ λλ− −+ ∂ ∂ ∧ − ∂ ∂ ∧‖ ‖ ‖ ‖

(49)* * 2 2
w wF ( ) F ((( ) / ( ²)) ) ( / ( )) 2 ( / ( )) ,      i i i i i i ia y x x y dy a y x e dy a y y e xiλ λω δ δΩ = = + = − − +  ‖ ‖ ‖ ‖ ‖ ‖
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Proposition 7. Let XH be take Hamiltonian vector field as follows:

Then we find

And

Assume that a curve

be an integral curve of the Hamiltonian vector field X, i.e.,

In the local coordinates, it is obtained that

and

Taking (56), if we equal (54) and (57), it holds

Hence, the equations introduced in (59) are named conformal Weyl-Hamilton equations on the almost Kähler model H *2n of 
Finsler manifold Fⁿ and then the triple ( H *2n,Φ,X) is said to be a Weyl-Hamiltonian Mechanical System on the almost Kähler model 
H *2n of Finsler manifold Fⁿ. Also, if the above equations (59) λ=0 is selected, the equations [2] are obtained.

Proposition 8: We choose ,   2     L L LF i g and f at i dEξ ξλ= = Φ = Φ = (31) and by considering the equation ( ) ( )             F e g F g df= −  (15). Thus, we can 
write Weyl-Euler-Lagrangian dynamic equation as follows. The second part (31), according to the law of conservation of energy 
[1], will not change for conservative dynamical systems.

By means of iXHΦ=dH, the Hamiltonian vector field is found as follows:

( )( ) ( )( )/ / .     i i i i
HX X x Y yδ δ= ∂ ∂ + (51)

(52)

( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )2 2/ 2 / / / .  ]   i j j i i j j ia y y e y dy x a y e y y dy xλ λλ δ δ+ ∂ ∂ ∧ + ∂ ∂ ∧‖ ‖ ‖ ‖ (50)

( )
( ) ( )( ) ( ) ( )) ( )( )

( )( ) ( ) ( )( ) ( )( )

2 2

2 2

1/ 2 / 2 / /

/ 2 / /

XH H

i j i i i i

i i j j i j

i X

X a y e x x dy X a y e dy

X a y y e y dy X a y e dy

λ λ

λ λ

λ

λ

− −

Φ = Φ

= − ∂ ∂ +

+ ∂ ∂ +

 ‖ ‖ ‖ ‖

‖ ‖ ‖ ‖

( )( ) ( ) ( )( ) ( )( )2 2/ 2 / /   i j i j i jY a y e x x dx Y a y e dxλ λλ− −+ ∂ ∂ −‖ ‖ ‖ ‖

(53)( ) ( )( ) ( ) ( )( )/ / .        j j j jdH H x dx H y dyδ δ= ∂ ∂ +

( )( ) ( ) ( )( ) ( ) ( )( ) )( ) ( ) ( )( ) ( )( )2 2 2 22 / 1/ 2 / 2 / /( /j i i j i i
HX y a e x x e y e y e H y xλ λ λ λλ λ− −

= − ∂ ∂ + + ∂ ∂ + ∂ ∂ ∂ ∂‖ ‖

(54)( )( ) ( ) ( )( ) ( ) ( )( )( )( ) ( ) ( )( ) ( )( )2 2 2 22 / 1/ 2 / 2 / / / .j i i j i iy a e x x e y e y e H x yλ λ λ λλ λ δ δ− −+ ∂ ∂ − −
 ∂

 ∂ ∂ − ∂‖ ‖

(55)*:   T M  I Rα ⊂ →  

(56)( )( ) ( ) ,       .   X t t t Iα α= ∈

(57)( ) ( ),         i it x yα =

(58)( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )/ / / / .    i i i it dx dt x dy dt yα δ δ= ∂ ∂ +

(59)
( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )( ) ( ) ( )( )
( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )( ) ( ) ( )( )

2 2 2 2

2 2 2 2

/ 2 / 1/ 2 / 2 / / ,
     

/ 2 / 1/ 2 / 2 / / .

i j i i j i

i j i i j i

dx dt y a e x x e y e y e H y

dy dt y a e x x e y e y e H x

λ λ λ λ

λ λ λ λ

λ λ

λ λ

− −

− −

= − ∂ ∂ + + ∂ ∂ + ∂ ∂

= ∂ ∂ − −



∂ ∂ − ∂ ∂


 

 
 

5

6

‖ ‖

‖ ‖

(60)
( )( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( ) ( )( ) ( ) ( )( )

/ / /

/ / / .  

i i

i i

dx dt y a H y

dy dt y a H x

= ∂ ∂

= − ∂ ∂

7

8

‖ ‖

‖ ‖

Mechanical Equations for Conservative Dynamical Systems
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( ) ( )
( ) ( )
( )

2

,

2 ,

2 ,

L L L

L L

L L

i dE

i e d

d dE

ξ

λ
ξ

ξ

ξ λ

ξ λ

Φ = Φ =

Φ = Φ −

Φ − =

and ( )2 .  H L LiX d E λΦ = +  from then, added ( )2     L L λ→ +  at the above equation (46). So, we can write

The differential equations (61) can be named conformal Weyl-Euler-Lagrangian mechanical system for conservative dynamical 
systems.

The second part (2), according to the law of conservation of energy for conservative dynamical systems [1], will not change. So, we 
can write paracomplex conformal Weyl-Hamiltonian dynamic equation as follows:

from then, added (H→H+2λ) at the above equation (46). So, we can write, using (59) and (63), we can obtain

Proposition 9: We choose    HF iX= ,       g = Φ  and f=2λ at (15) and by considering the equation (33)

Hence, the equations introduced in (64) can be named conformal Weyl-Hamiltonian Equations for conservative dynamical 
systems.

( )( ) ( )( ) ( )( ) ( )( )( ) ( )( ) ( )( )2/ / 2 / 2 / 0, i iy a t e L y L xλ λ δ λ δ−∂ ∂ ∂ + ∂ + + =‖ ‖

( )( ) ( )( ) ( )( ) ( )( )( ) ( )( ) ( )2/ / 2 / ( 2 / 0,     i ia y t e L x L yλ δ λ δ λ∂ ∂ + − ∂ + ∂ =‖ ‖ (61)

(62)

( )
( ) ( )

( )
( )

2

,

2 ,

2 ,

2 2 .  

H H

H H

H

H

iX X dH

iX e X d

X d dH

iX dH d d H

λ λ

λ

λ λ

Φ = Φ =

Φ = Φ −

Φ − =

Φ = + = +

(63)
( )

( )
2 ,

2 .    
H

H

X d dH

iX d H

λ

λ

Φ − =

Φ = +

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )( ) ( )( ) ( )( )2 2 2 2/ 2 / 1/ 2 / 2 / 2 / ,i j i i j idx dt y a e x x e y e y e H yλ λ λ λλ λ λ− − 
= − ∂ ∂ + + ∂ ∂ + ∂ + ∂‖ ‖

(64)( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )( ) ( )( ) ( )( )2 2 2 2/ 2 / 1/ 2 / 2 / 2 / .i j i i j idy dt y a e x x e y e y e H xλ λ λ λλ λ λ− − = ∂ ∂ − − ∂ ∂ − ∂ + ∂‖ ‖

Symbolic Solution of the System and Graphic

It is well-known that an electromagnetic field is a physical field produced by electrically charged objects. How the movement of 
objects in electrical, magnetically and gravitational fields force is very important. For instance, on a weather map, the surface 
wind velocity is defined by assigning a vector to each point on a map. Also, each vector represents the speed and direction of 
the movement of air at that point. The location of each object in space represented by three dimensions in physical space. The 
equations system (47) and (60) have be solved by using the Maple software and implicit solution is below.

Figure 1: The path followed by Lagrange Graph
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( )
( ) ( ) ( )

 , , 0,  / 1, ² 1.
 

, , ,
for x y t y a
L x y t exp t t exp t

λ = = = −
= ∗ + + − ∗

i
i i
‖ ‖

Figure 2: The path followed by the Hamilton Graph

Discussion
By this study, the above-mentioned forms (19) were transferred to the mechanical system for dynamical systems. In addition, in 
the equations implicit solutions (46) and (59) were found using Maple computation program. So, the Weyl-Euler-Lagrange (46) 
and Weyl-Hamilton (49) mechanical equations derived on Weyl-Finsler manifolds may be suggested to deal with problems in 
electrical, magnetically and gravitational fields for the path of movement Figure 1 and Figure 2 of defined space moving objects  
[32,33]. Therefore, the found equations on Weyl-Finsler geometry has been used in solving problems in different applied areas.

In this study the most important advantage is to obtain geodesic on Weyl-Finsler manifolds. Thus, geodesics is to allow the 
calculation of linear or nonlinear distance for the orbits of moving objects.
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