

Journal of Surgical Science and Operative Care

If Acute Appendicitis Due to Enterobius Vermicularis has Potential Predictive Differences in Terms of Blood Count Parameters Compared to Other Causes; Retrospective Study

Badak B^{*}

Department of General Surgery, Medical School, Eskisehir Osmangazi University, Turkey

*Corresponding author: Badak B, Department of General Surgery, Medical School, Eskisehir Osmangazi University, Turkey, E-mail: drbartu@gmail.com

Citation: Badak B (2018) If Acute Appendicitis Due to Enterobius Vermicularis has Potential Predictive Differences in Terms of Blood Count Parameters Compared to Other Causes; Retrospective Study. J Surg Sci Oper Care 1: 103 **Article history: Received:** 03 July 2018, **Accepted:** 04 September 2018, **Published:** 06 September 2018

Abstract

Acute appendicitis is the most common cause of acute abdominal syndrome and the most frequent emergency operation in our country and all over the world. The main causes of acute appendicitis are; inflammation, fecaloid, tuberculosis, foreign body obstruction, tumor, diverticula and 'enterobius vermicularis' infection can cause this table formation. In this retrospective modified study, the possible predictive effects and differences of preoperative complete blood counts of enterobius vermicularis and acute appendicitis in patients who underwent appendectomy in acute appendicitis.

Keywords: Enterobius Vermicularis; Blood Count; Appendicitis

Introduction

Appendectomy is one of the most common emergency surgical procedures and is the most frequently performed surgical operation in the world and our country as acute abdominal surgery [1]. Addiss et al. found the risk of being appendicitis nearly 8.6% throughout life [2].In another study, it is noted that almost 7% of all people had an appendectomy operation during their lifetime [3]. The acute appendicitis, defined as the inflammation of the appendix, is mostly seen with the 2nd and 3rd decades [4]. Histopathological examinations of the specimens of patients who underwent appendectomy have been reported in studies are often infections such as acute inflammation, fibrous tissue, neoplasm, neuroendocrine tumors, tuberculosis, diverticulitis, granulomatous inflammation, adenomas, actinomycets, endometriosis and enterobius vermicularis [5]. The occlusion of the appendix lumen seems to be the reason for inflammation. The most common symptoms are abdominal pain (78%) and nausea-vomiting (26%) [6].

This study was constructed and applied in Eskisehir Osmangazi University general surgery department. Approximately 250 appendectomy surgeries are performed annually due to acute appendicitis at our center yearly. The operations can be performed open and laparoscopically. This study compared 21 patients who had undergone appendectomy surgery between 2012-2017 whose pathologic examination was the main acute inflammation and 17 patients who had the same operation who had enterobius vermicularis in the final pathology. Reasons for inflammation in the control group were fecaloid, tumor, foreign body, neuroendocrine tumor and diverticulitis. As comparison parameter, full blood count values at the time of first application of the patients were used. Statistical analyzes were performed using IBM SPSS, version 21. The T test was assessed to normal range specimens and Mann-Whitney U used for abnormal range of specimens.

This study is designed whether a possible predictive effect of pre-operative complete blood count between patients who underwent objective appendectomy and reported as enterobius vermicularis and other group of patients.

Results

Since the 'Hb, Htc, erythrocyte and MPV' variants showed normal distribution according to the distribution test (Table 1). T test was used to compare these variables with e.vermicularis and inflammation (other causative) patients (Table 2). Between 2012-2017,

38 patients undergoing appendectomy were analysed, divided into two groups (e.vermicularis-other). T test and Mann-Whitney U tests were used according to their variability or normal distribution of parameters (Table 3, 4 and 5). The results of the final evaluation revealed that the patients with enterobius vermicularis final histopathologic examination had statistically higher pre-operative initial blood counts than the other groups (Table 4).

Tests of Normality										
	CDUD	Kolm	ogorov-Sn	nirnova	Shaj	piro-Wil	k			
	GRUP	Statistic	df	Sig.	Statistic	df	Sig.			
ACE	E.VERMİ	,228	17	,019	,744	17	,000			
AGE	İNFLAM	,230	21	,005	,657	21	,000			
LIDC	E.VERMİ	,127	17	,200*	,975	17	,898			
пbG	İNFLAM	,161	21	,160	,935	21	,171			
UCT	E.VERMİ	,097	17	,200*	,962	17	,677			
пст	İNFLAM	,143	21	,200*	,963	21	,572			
EDITDOCVTE	E.VERMİ	,121	17	,200*	,967	17	,759			
ERITROCTTE	İNFLAM	,104	21	,200*	,975	21	,843			
DDW	E.VERMİ	,263	17	,003	,884	17	,038			
RDW	İNFLAM	,353	21	,000	,471	21	,000			
	E.VERMİ	,159	17	,200*	,859	17	,015			
LEUKOCYTE	İNFLAM	,095	21	,200*	,970	21	,733			
ADC NEU	E.VERMİ	,179	17	,153	,877	17	,029			
ABS_NEU	İNFLAM	,175	21	,091	,967	21	,663			
	E.VERMİ	,188	17	,113	,878	17	,029			
AB5_LYM	İNFLAM	,164	21	,146	,857	21	,006			
AR MONO	E.VERMİ	,365	17	,000	,553	17	,000			
AB_MONO	İNFLAM	,188	21	,051	,841	21	,003			
AD FOCINI	E.VERMİ	,145	17	,200*	,922	17	,161			
AB_EOSIN	İNFLAM	,195	21	,036	,805	21	,001			
	E.VERMİ	,333	17	,000	,499	17	,000			
AB_BAZO	İNFLAM	,312	21	,000	,741	21	,000			
DIT	E.VERMİ	,281	17	,001	,787	17	,001			
PLI	İNFLAM	,131	21	,200*	,975	21	,841			
MDV	E.VERMİ	,129	17	,200*	,955	17	,532			
MPV	İNFLAM	,116	21	,200*	,977	21	,875			

*This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Table 1: Since the Hgb, Hct, Ert, and Mpv variables showed normal distribution according to the normal distribution test, the T test was used to compare these variables with the patients and normal individuals

T-Test										
Group Statistics										
	GRUP	Std. Deviation	Std. Error Mean							
HB	E.VERMİ	17	12,9000	1,98463	,48134					
	İNFLAM	21	13,9429	1,86187	,40629					
HCT	E.VERMİ	17	38,3059	5,05760	1,22665					
	İNFLAM	21	40,9000	4,94702	1,07953					
ED stree exite	E.VERMİ	17	4,7229	,62176	,15080					
ERitrocyte	İNFLAM	21	4,8848	,58681	,12805					
MDV	E.VERMİ	17	8,3235	,93443	,22663					
MPV	İNFLAM	21	8,7095	1,26091	,27515					

Independent Samples Test												
		Leven for E of Va	Levene's Test for Equality t-test for Equality of Means of Variances									
			F	F Sig. t		df Sig. (2-tailed)		Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference		
										Lower	Upper	
TID	Equal variance	,180	,674	-1,667	36	,104	-1,04286	,62556	-2,31156	,22584		
пр	Equal variances not assumed				-1,656	33,370	,107	-1,04286	,62989	-2,32385	,23813	
UCT	Equal variance	,187	,668	-1,591	36	,120	-2,59412	1,63013	-5,90016	,71193		
HCI	Equal variances			-1,588	34,044	,122	-2,59412	1,63403	-5,91470	,72647		
FRITROCIT	Equal variance	,114	,737	-,823	36	,416	-,16182	,19660	-,56054	,23690		
ERITROSIT	Equal variances			-,818	33,471	,419	-,16182	,19783	-,56410	,24046		
MDV	Equal variance	1,390	,246	-1,049	36	,301	-,38599	,36787	-1,13206	,36007		
IVIP V	Equal variances not assumed				-1,083	35,765	,286	-,38599	,35647	-1,10912	,33713	
HB t= -1.67 sd		sd= 36	P=0.104	p>0.05								
HCT t= -1.60 sc		sd= 36	P=0.120	p>0.05								
ERITROCYTE t= -0.83 sd			sd= 36	P=0.416	p>0.05							

MPV t= -1.05 sd= 36 P=0.301 p>0.05

Table 2: There is no significant difference in patient and control groups for Hgb, Hct, Ert, and Mpv according to T test results

Nonparametric Tests: The Mann-Whitney U test was used for nonparametric tests because the other variables were not normal distributions for RDW, LEUKOCYTE, ABS_NOTROFIL, ABS_LENFOSITE, AB_MONO, AB_EOZINE, AB_BAZO and PLT.

	Hypothesis Test Summary									
ĺ		Null Hypothesis	Test	Sig.	Decision					
	1	The distribution of RDW is the same across categories of GRUP	Independent Samples mann-whitney U Test	.750 ¹	Retain the null hypothesis.					
	2	The distribution of LOKOSIT is the same across categories of GRUP	Independent Samples mann-whitney U Test	.681	Retain the null hypothesis.					
	3	The distribution of ABS_NOTROFIL is the same across categories of GRUP	Independent Samples mann-whitney U Test	.561	Retain the null hypothesis.					
	4	The distribution of ABS_LENFOSIT is the same across categories of GRUP	Independent Samples mann-whitney U Test	.3081	Retain the null hypothesis.					
	5	The distribution of AB_MONO is the same across categories of GRUP	Independent Samples mann-whitney U Test	.291	Reject the null hypothesis.					
	6	The distribution of AB_EOZIN is the same across categories of GRUP	Independent Samples mann-whitney U Test	.1611	Retain the null hypothesis.					
	7	The distribution of AB_BAZO is the same across categories of GRUP	Independent Samples mann-whitney U Test	.1281	Retain the null hypothesis.					
	8	The distribution of PLT is the same across categories of GRUP	Independent Samples mann-whitney U Test	.421	Reject the null hypothesis.					

Asymptotic significances are displayed. The significance level is .05.

¹Exact significance is displayed for this test.

Table 3: There are significant differences between these variables for AB_mono and PLT

							Percentiles				
	N	Mean	Std. Deviation	Minimum	Maximum	25 th	50 th (Median)	75 th			
RDW	38	13,6658	2,76838	11,50	28,60	12,5750 13,1000		13,7000			
LEUKOCYTE	38	13821,8421	5047,09971	6400,00	28410,00	10250,0000	13750,0000	16050,0000			
ABS_NEU	38	11099,7368	5201,51874	2900,00	26400,00	6575,0000	11750,0000	13325,0000			
ABS_LYM	38	1652,3684	744,61466	800,00	3400,00	1000,0000	1400,0000	2225,0000			
AB_MONO	38	794,7368	548,06656	100,00	2700,00	500,0000	600,0000	1000,0000			
AB_EOZİN	38	175,2632	172,68526	,00	600,00	,0000	190,0000	285,0000			
AB_BAZO	38	94,4737	150,14763	,00	600,00	,0000	20,0000	100,0000			
PLT	38	244157,8947	85578,95874	67000,00	547000,00	191750,0000 227000,		279750,0000			
GROUP	38	1,5526	,50390	1,00	2,00	1,0000	2,0000	2,0000			

Table 4: Descriptive Statistics

Test Statistics ^a											
RDW LEUKOCYTE ABS_NEU ABS_LYM AB_MONO AB_EOZIN AB_BAZO											
Mann-Whitney U	167,000	116,000	113,500	143,000	104,500	130,500	126,000	109,000			
Wilcoxon W	320,000	269,000	266,500	374,000	257,500	361,500	279,000	340,000			
Z	-,339	-1,836	-1,908	-1,044	-2,197	-1,443	-1,647	-2,041			
Asymp. Sig. (2-tailed)	,735	,066	,056	,296	,028	,149	,099	,041			
Exact Sig. [2*(1-tailed Sig.)]	,750 ^b	,068 ^b	,056 ^b	,308 ^b	,029 ^b	,161 ^b	,128 ^b	,042 ^b			

a. Grouping Variable: GRUP

b. Not corrected for ties. AB-MONO z=-2.20PLT z=-2.04**Table 5:** Mann-Whitney Test

p=0.028 p<0.05* p=0.041 p<0.05*

Discussion

Acute appendicitis is the most common acute abdominal surgery worldwide. Obstruction of appendix lumen is seems to be the cause of appendiceal inflammation. Rare reasons such as fecalids, neoplasms, lymphoid hyperplasia are leading for obstruction [7]. Parasitic infections are common in South American countries. Parasitic infections are associated with poor hygienic conditions, low socioeconomic status, contaminant foods and contaminant water [8]. In recent studies, several cases of enterobius vermicularis that causes acute appendicitis are present all over the world. Enterobius vermicularis microorganism that spend lifetime in intestinal lumen is considered as an etiologic factor of acute appendicitis because of the ability of obstruction of the appendix lumen. In the case of acute appendicitis, physical examination, laboratory and ultrasonography triad is critical. In this process, pain in the lower right quadrant (Mc Burney point) and rebound in the examination are provided with laboratory tests. There is a critical advantage of the inflammatory parameters like wbc, sediments and CRP. Abdomen ultrasonography is the most commonly used imaging method in diagnosis in parameters of appendiceal inflammation, wall thickness, etc., but it can not provide definitive information about the etiologic reason for the naturality. Abdominal tomography can also be used in selected patients [9]. At the point our knowledge that routine blood counts were made in patients presenting with a complaint of abdominal pain and suspected of infection, we designed this retrospective study to analyse the possible predictive effect of parameters other than the most commonly used inflammatory markers (Wbc, sediments, CRP, neutrophil/lymphocyte ratio ...) of this whole blood count in determining whether acute appendicitis was caused by enterobius vermicularis or another cause during patient admission.

Main limitation fort his study was the average age of patients. Enterobius vermicularis caused acute appendicitis were diagnosed in young patients rather than elderly population.

Conclusion

As a result; absolute monocyte and plt (platelet) values should be considered in patients with acute appendicitis as a predictive factor for enterobius vermicularis infection except for the usual parameters. A good anamnesis and socioeconomic situation should be investigated in case of questioning whether antihelmintic medical therapy can suppress the evidence without needing surgery. This study should be designed and supported with studies in which the number literature is limited yet.

References

Alemayehu H, Charles L, Synder SD, St Peter D, Ostlie J (2014) Incidence And Outcomes Of Unexpected Findings After Appendectomy. J Pediatr Surg 49: 1390-3.
Addiss DG, Shaffer N, Fowler BS, Tauxe RV (1990) The Epidemiology Of Appendicitis And Appendectomy İn The United States. Am J Epidemiol 132: 910-25.
Komenka IK, Wu GCH, Lazar EL, Cohen JA (2003) Strongyloides Appendicitis: Unusual Etiology İn Two Sibilings With Chronic Abdominal Pain. J Ped Surgery 38: 1-3.

4. Lamps LW (2004) Appendicitis And İnfections Of The Appendix. Semin Diagn Pathol 21: 86-97.

5. Duzgun AP, Moran M, Uzun S, Ozmen M, Ozer VM, et al. (2004) Unusual Findings İn Appendectomy Specimens. Evaluation Of 2458 Cases And Review Of Literature. Indian J Surg 66: 221-6.

6. Hasegawa T, Yoshida K, Matsui K (2007) Endometriosis Of The Appendix Resulting İn Perforated Appendicitis. Case Rep Gastroenterol 1: 27-31.

7. Akbulut S, Tas M, Sogutcu N, Arikanoglu Z, Basbug M, et al. (2011) Unusual Histopathological Findings İn Appendectomy Specimens: A Retrospective Analysis And Literatüre Review. World J Gastroenterol 17: 1961-70.

8. Flum DR, Koepsell T (2002) The Clinical And Economic Correlates Of Misdiagnosedappendicitis: Nationwide Analysis. Arch Surg 137: 799-804.

9. Yilmaz M, Akbulut S, Kutluturk K, Sahin N, Arabaci E, et al. (2013) Unusual Histopathological Findings İn Appendectomy Specimens From Patients With Suspected Acute Appendicitis. World J Gastroenterol. 19: 4015-22.